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A B S T R A C T   

In this paper we present a generalised and systematic decision support methodology and tool to identify and 
evaluate options for facilitated symbiotic development of industrial clusters. Our approach is developed with 
insight and feedback from industry, community and Government stakeholders of the Kawerau industrial site in 
New Zealand to support early stage engagement of diverse stakeholders. The methodology integrates cluster 
design by superstructure optimisation, the WoodScape techno-economic analysis methodology and Monte Carlo 
simulation to provide a range of metrics for investment profitability, macroeconomics and environmental impact 
to suit diverse stakeholder needs. The novelty of the methodology lies in the flexibility of its modular formulation 
using demand driven models for industrial plants at an appropriately reduced complexity and using recent ad-
vances in optimisation technology. Impact of key uncertainties are assessed through post optimisation Monte 
Carlo simulations. The methodology is applied to three case studies to identify and evaluate new wood pro-
cessing opportunities for the Kawerau site. The methodology is formulated to be general and can be applied to 
other industrial clusters.   

1. Introduction 

1.1. Industrial symbiosis 

Industrial Symbiosis (IS) is a useful concept that draws analogies 
from symbiotic interactions among organisms in natural ecosystems to 
develop industrial ecosystems, whereby business-to-business relation-
ships mimic nature to shift from a linear, to a less wasteful more circular 
economy (Baldassarre et al., 2019; Ehrenfeld, 2004; Marchi et al., 2017). 
The principle ideas of IS are to take a systems approach to (i) integrate 
firms as a synergistic network of interacting and more sustainable in-
dustrial systems; (ii) optimise energy and material cycles to minimise 
waste and to provide business opportunities for underutilised resources 
(materials, energy, capacity, expertise, infrastructure, services, etc); and 
(iii) drive innovation and economic development, enabled by 
cross-sectoral knowledge transfer (Baldassarre et al., 2019; Lombardi 
and Laybourn, 2012). Firms in such an industrial system can achieve 
competitive advantages through greater economies of scale, reduced 
costs and being able to achieve optimisations that are not realisable as 

individual firms (Marchi et al., 2017). Further opportunities to increase 
competitiveness include diversification of product portfolios, process 
innovations and risk management (Kuznetsova et al., 2016; Lombardi 
and Laybourn, 2012). 

The scope for industrial symbiosis become technically more feasible 
when diverse firms are co-located within proximity. This is partly 
because transport cost scales with transport distance, but also by 
exchanging by-products and sharing infrastructure and utilities such as 
energy and waste treatment. A prominent example of successful IS 
within geographic proximity is that of Kalundborg (Denmark), where a 
diverse group of companies collaborated to reduce costs and improve 
efficiency in waste management and freshwater use. The spontaneous 
(self-organised) emergence and successful symbiosis at Kalundborg was 
mainly driven by rational business interests (Ehrenfeld and Chertow, 
2002). 

1.2. Identifying and quantifying new symbiosis opportunities 

Natural evolution through rational business transactions is not the 
only route to successful IS. The Ulsan Eco-Industrial Park (Korea) 
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(Behera et al., 2012) developed through top-down strategic planning. At 
Kwinana, Australia (Van Beers et al., 2007) synergies in the mineral 
industry developed through a facilitated deployment approach that is a 
combination of self-organised and planned approaches (Chertow and 
Ehrenfeld, 2012). 

In all of these approaches, the economic driver remains prominent 
and universal (Kastner et al., 2015). The ability to identify symbiotic 
opportunities, quantify their economic and environmental benefits and 
express them as sound business cases that can be effectively communi-
cated to decision makers, is therefore critically important to catalyse and 
facilitate IS investment (Behera et al., 2012). Model based decision 
support tools can play a key role in achieving this. Several studies have 
reviewed recent developments in quantitative tools and methods for 
designing and facilitating symbiosis in industrial clusters (e.g. Baldas-
sarre et al., 2019; Boix et al., 2015; Kastner et al., 2015; Lawal et al., 
2020). 

Among the practical challenges that still remain for rapid identifi-
cation and techno-economic assessment (TEA) of IS opportunities is the 
hierarchy of scales involved, ranging from unit-processes, to multi-unit- 
process plants, through to the interconnected network of plants and 
utility systems that make up a complex industrial system-of-systems 
(Duflou et al., 2012; Pan et al., 2016). At the unit-process and plant 
levels, process simulators (e.g. Aspen Plus®) can be used in solving 
process design, retrofit and process optimisation problems (Karlsson and 
Wolf, 2008). However, such process simulation models are expensive, 
time-consuming to develop and add to the complexity of the full system 
model. In developing decision support tools to identify and evaluate IS 
options, emphasis on process simulation is only expected to have mar-
ginal benefit. This is mainly because process simulation predicts only the 
behaviour of a given plant or system configuration once it is 

implemented and is one of the last steps in decision-making (Diwekar 
and Shastri, 2010; Karlsson and Wolf, 2008). In this case, simplified 
models combining heuristic methods, thermodynamic principles, mass 
and energy balances at the plant level could be used for the purposes of 
input-output matching as well as thermo-economic assessments such as 
valuing utility heat streams of different quality (Valero et al., 2013). 
Such models can then be used in conjunction with well-established 
methods for systems analysis such as simulation or optimisation. 
Mathematical programming optimisation is particularly suited to 
problems of structural optimisation. One example is the MIND (Method 
for analysis of INDustrial energy systems) decision support tool based on 
a MILP (Mixed Integer Linear Programming) formulation. The MIND 
method has been used to study cost optimal system configurations in the 
Swedish forest industry, among other applications (Karlsson, 2011; 
Karlsson and Wolf, 2008). 

Further challenges to model development can stem from the di-
versity of stakeholders such as Government or a regional Council acting 
as an IS facilitator, incumbent industrial firms and potential new en-
trants to the industrial cluster. Decision making can then be driven by 
more diverse objectives beyond just cost optimal resource matching. For 
example, reduction in greenhouse gas (GHG) emission, regional impact 
(e.g. job creation), security of feedstock supply for incumbent firms or 
risks inherent to the investment case such as price volatility. 

Addressing these challenges using a MILP formulation would pose 
difficulties due to non-linearities inherent to such systems (e.g. plant 
cost scaling with production capacity), or to allow flexibility to incor-
porate non-linear constraints. A MINLP (Mixed Integer Non-linear Pro-
gramming) formulation (Grossmann, 1990) that combine MILP and 
nonlinear programming can circumvent some of these difficulties. This 
would provide improved accuracy, but at the expense of computational 

List of abbreviations 

CAPEX Capital expenditure 
CDF Cumulative probability density function 
CF Cashflow 
CFBT Cashflow before tax 
CHP Combined heat and power 
CTR Commercial tax rate 
DC Depreciation costs 
DCFA Discounted cashflow analysis 
DVA Direct value added 
DE Direct employment 
MVA Multiplier for value added 
MDE Multiplier for direct employment 
EBITDA Earnings before interest, tax, depreciation and 

amortisation 
EBIT Earnings before interest and tax 
FC Fixed costs 
FCI Fixed capital investments 
FTE Fulltime equivalent employment 
GDP Gross domestic product 
GHG Greenhouse gas 
GTPP Geothermal power plant 
HP High pressure 
IRR Internal rate of return 
IS Industrial symbiosis 
ISM Industrial sawmill 
ITR Income tax rate 
ITREV Income tax revenue 
KPM Kraft pulp mill 
LC Labour costs 
LY Log yard 

LP Low pressure 
MC Maintenance costs 
MADS Mesh adaptive direct search 
MCS Monte Carlo simulation 
MDF Medium density fibre board 
MILP Mixed integer linear programming 
MIND Method for analysis of industrial energy systems 
MINLP Mixed integer non-linear programming 
MP Medium pressure 
NOMAD Non-linear optimisation with the MADS algorithm 
NPM Newsprint mill 
NPV Net present value 
NZ New Zealand 
odt Oven-dry tonne 
OELTM Optimised engineered lumber 
OFC Other fixed costs 
OPEX Operating expenditure 
OPTI Optimisation inteface 
PDF Probability density function 
PI Profitability index 
REV Revenue (gross) 
RFR Risk-free rate of return 
ROCE Return on capital employed 
SR Sharpe ratio 
SSM Structural sawmill 
TEA Techno-economic analysis 
TPM Tissue paper mill 
UP Unit price 
US United States 
VC Variable costs 
WC Working capital costs  
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complexity and concerns around globality of solutions (Kantor et al., 
2015). However, recent advances in the field of MINLP and constrained 
derivative-free optimisation has made formulating mathematical 
models suitable for MINLP optimisation realistic for real-world appli-
cations (Boukouvala et al., 2016). 

The WoodScape methodology is widely used in the New Zealand 
forestry industry to analyse the potential of traditional and emerging 
wood processing technologies (Hall, 2016). It can provide a basis for 
both the formulation of plant models at reduced computational 
complexity suited to an optimisation formulation for IS as well as TEA, 
including macroeconomic impact (Barry and Hall, 2014). 

The purpose of this paper is twofold: (1) To present a flexible and 
systematic decision support framework to quickly identify and evaluate 
IS opportunities in clusters. The framework will address, to varying 
degrees, key issues such as techno-economics, GHG emissions, 

macroeconomic impacts, resource constraints, operational constraints 
and risk to profitability through post optimisation Monte Carlo simula-
tion (Peters, 2007). (2) To demonstrate a proof-of-concept for the pre-
sented methodology by applying it to a case study to identify and 
evaluate new wood processing opportunities at New Zealand’s only 
major IS cluster, a wood processing cluster located in the district of 
Kawerau. A brief description of the Kawarau industrial cluster is pro-
vided for context in the following section. 

The novelty of this work lies in the flexibility of its modular formu-
lation using demand driven models for industrial plants at an appro-
priately reduced complexity and applying recent advances in 
optimisation technology for structural optimisation. This is useful for 
stakeholder engaged planning by identifying new configurations for 
different objectives. Impact of key uncertainties are assessed through 
post optimisation Monte Carlo simulations. 

Fig. 1. The Kawerau Industrial cluster: (A) Location in New Zealand’s North Island; (B) Plantation forest resource; (C) Rail and state highway network and 
geothermal wells; (D) Layout of major plants within the cluster (background aerial images are used under a Creative Commons Attribution 4.0 International licence 
(Land Information New Zealand., 2017)). 
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2. Kawerau wood processing cluster 

2.1. Major existing plants 

Kawerau, located in the Bay of Plenty region of New Zealand’s North 
Island, is the site of the world’s largest geothermal-fuelled wood pro-
cessing cluster (Fig. 1(A)). The main industrial processing units within 
this cluster are: (1) a log yard (LY) with stem to log processing of ~1 
Mm3 per annum producing 40k green tonnes of residue per annum; (2) 
an industrial sawmill (ISM) nominally producing ~54k odt/y (oven-dry 
tonnes per year) of packaging lumber (3) a structural sawmill (SSM) 
nominally producing 134k odt/y of structural lumber; (4) a market kraft 
pulp mill (KPM) nominally producing 243k odt/y of pulp; (5) a news-
print mill (NPM) producing 121k odt/y of newsprint paper; (6) a tissue 
paper mill (TPM) nominally producing 44k odt/y of tissue paper; and (7) 
a number of geothermal power plants (GTPP) with a combined installed 
capacity of ~130 MW electricity. These figures are from data gathered 
in 2016. It should be noted that this cluster is continually evolving as the 
different plants in the cluster make changes to their operations. The 
general layout of these major plants at the site is shown in Fig. 1(D). 

There is already significant industrial symbiosis within the cluster. 
Key material and energy exchange links are illustrated schematically in 
Fig. 2. Wood chip produced by the two sawmills within the cluster 
contribute to the total feedstock supply to both pulp mills with total 
demand being met by additional chip derived from pulp logs imported 
into the cluster from nearby plantation forests and associated log yards. 
The two pulp mills share a common combined heat and power (CHP) 
utility system that provides clean steam generated through a combina-
tion geothermal heat and biomass fired boilers. Electricity generated by 
the CHP plant and other geothermal power plants within and near the 
cluster feeds into the electric power grid at the site. Residues from the 
sawmills also contribute to the total heat demand of the KPM. 

2.2. Wood, residue and geothermal resources 

Fig. 1(B) shows a map of forests in proximity to the Kawerau and 
Fig. 1(C) shows state highways and railway infrastructure available for 
transport of wood and residue resources. The forests provide a variable 
wood supply over time. There are also significant log and post-harvest 
in-forest residues adjacent to Kawerau that are currently either expor-
ted unprocessed (logs) or left in the forest unused (post-harvest residues) 
that could be processed in Kawerau. In the case of the logs they pass 
through Kawerau on their way to the Port of Tauranga for export. There 
is significant wood supply potentially available above that already 
consumed by the cluster. 

Kawerau also has significant geothermal energy resources (see Fig. 1 
(C)). The current geothermal energy production is estimated at ~1000 
GWh/year as electricity and ~1500 GWh/y as direct heat use (White, 
2006). There is additional geothermal heat available from the 
geothermal field that could be exploited (estimated at up to 3000 
GWh/y). 

2.3. New wood processing opportunities 

Given the considerable forestry and geothermal resources, there is a 
real opportunity for further industrial symbiosis in such an integrated 
site by combining primary (e.g. logs to lumber etc) and secondary (e.g. 
sawdust to wood pellets) wood processing in innovative ways to make 
better use of biomass within the existing infrastructure and to create 
new business opportunities. Wood processing is typically energy- 
intensive and wood residue are normally burnt to provide the process 
energy needed. Cheaper geothermal energy which is available at 
Kawerau can be used to free up wood residues for conversion into other 
more profitable products or reduce embodied GHG emission from 
products. 

Fig. 2. Key material and energy transfer links within the Kawerau wood processing cluster.  
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3. Methodology 

3.1. Overview of decision support framework 

One of the key contributions of this work is to provide a generalised 
decision support methodology that is flexible enough to address diverse 
assessment needs and strike a balance between model complexity, ac-
curacy and rapid deployment for “what if?” analysis. The approach 
centres around a demand driven modular formulation of techno- 
economic models for individual plants, simplified through a fit for 
purpose combination of unit process level and heuristic models based on 
key plant data. This is illustrated schematically in Fig. 3(A). 

The methodology proceeds through several steps as illustrated 
schematically in Fig. 3(B). Details of these steps are given in the 
following subsections. 

3.2. Plant models 

Each plant model is standardised in terms of input and output 
streams as shown in Fig. 4. Here X = [X1,X2,⋯,Xi,⋯,XN] are a 
collection of N input material flow streams entering the plant, with each 
flow stream of material i denoted by Xi consisting of J sub-streams such 
that Xi = [Xi,1,Xi,2,⋯,Xi,j,⋯,Xi,J]. Here sub-stream j = 1 is reserved to 
represent mass flow of material i. Similarly, Y are a collection of plant 
output (product) material flow streams Yi each consisting of sub-streams 
Yi,j. 

The material flow for each input material i is split into import 
streams and local streams. The left superscripts I denotes import streams 
which are material flows sourced from outside the boundaries of the 
cluster. The left superscript L denotes local streams which are sourced 
from within the cluster boundary. Thus, the total material flow of the jth 

sub-stream of a material i into a plant is given by Xi,j = IXi,j +
LXi,j, and 

the special case of mass flow of material i is given by Xi,1 = IXi,1 +
LXi,1. 

Similarly, the material flow of each output material i is split into local 
streams and export streams. In this case the left superscript E denotes 
export streams which exits the cluster boundary. The left superscript L 
denotes products or by-products that are deposited within the cluster 
boundaries for access by other plants within the cluster. The total mass 
of product material i is given by Yi,1 = LYi,1 +

EYi,1. 

In Fig. 4, W denotes work streams. In this paper, this represents net 
electrical power consumption, with the convention that a negative value 
represents surplus power generation. Other energy streams such as 
natural gas for heat or geothermal steam are treated as material streams 
for which demand is calculated within the process model based on the 
quality (temperature) of the heat stream required for the given process. 
The thermodynamic properties such as enthalpy of these material 
streams are estimated using equations of states from the CoolProp 
thermodynamic properties package (Bell et al., 2014) and used to esti-
mate any heating and cooling utility demands for the plant process. 

The plant models and subsequent optimisation and Monte Carlo 
analyses are implemented in the MATLAB® numerical computing 
environment. The plant models are formulated as demand driven 
models of the form 
[

EY,LY,IX,LX,W
]
= fp(d) (1)  

Where fp denotes a vector-valued function encapsulating the process 
model of the pth plant in the cluster, and the input argument d = [d1, d2,

⋯, dK] is a vector of decision variables. The first 4 decision variables d1 
through d4 are standardised as follows. 

The decision variable d1 is a binary variable such that if d1 = 0, then 
fp(d) = 0 but has no effect on fp(d) when d1 = 1. This represents the 
possibility that a plant operation can be introduced into or removed 
from the cluster. d2 is a continuous variable defined to be equal to the 
total required rate of production of the primary product from the plant. 
Adopting the convention that Y1 represents the primary product, this 
means Y1,1 ≡ d2. In Fig. 4, αi ≡ d3 is the mass fraction of resource ma-
terial i used by the plant that is imported into the cluster. Then the 
remaining fraction (1 − αi) is the amount that is sourced locally from the 
cluster. Similarly, βi ≡ d4 is the mass fraction of product material i that is 
exported out of the cluster. The remaining fraction (1 − βi) is deposited 
within the cluster for local use by other plants. 

An exemplar of the level of aggregation and detail expressed by the 
flexible demand-driven plant process model is shown in Fig. 5 which 
represents a kraft pulp mill. 

The exemplar in Fig. 5 shows eight input material streams X1 
through X8 , three product streams Y1 through Y3 and one work stream 
W1. For the purposes of techno-economic analysis, the complex kraft 

Fig. 3. (A) Model structure. (B) Methodology steps.  
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processes are represented by a simplified block with yield conversion 
factors using pulp production rate as a basis. This allows simple and 
rapid back calculation of the resource requirements X1 to X8 and W1, as 
well as secondary products Y2 and Y3 for any specified demand on the 
primary product Y1. The utility system is treated with more detail based 
on the requirement of the temperature and pressure of high pressure 
(HP), medium pressure (MP) and low pressure (LP) steam in order to 
provide enough granularity to distinguish between the cost of steam of 
different qualities. Expressing the plant function fp(d) procedurally in a 
programming language provides the flexibility to easily include heu-
ristics specific to a given plant operation based on expert knowledge. 

3.3. Techno-economics and performance metrics 

The TEA is based on a combination of WoodScape methodology 
(Hall, 2016; Jack et al., 2013) and discounted cashflow analysis (DCFA) 
(Bejan and Moran, 1996). Once the plant function fp(d) is evaluated for a 
given production rate, all the necessary material and energy flow 
streams become available for the DCFA. These flow streams are 

standardised as annual flow rates, and cash flows determined using unit 
prices for the flow streams. The following performance metrics are then 
determined from a TEA (Details are provided in Appendix A.1). 

• EBITDA – Earnings before interest, tax, depreciation and amor-
tisation, which is a measure of operational profits.  

• EBIT – Earnings before interest and tax, is useful for high capital 
investments, and is estimated by adopting the straight-line depreci-
ation method and assuming no salvage value or amortisation costs.  

• NPV – Net present value, is a projection of earnings that will be 
generated by the investment over its lifetime.  

• IRR – Internal rate of return for the investment, is often a useful 
metric that assesses the desirability of an investment by comparison 
against a company’s required rate of return. 

• ROCE – Return on capital employed, is a useful measure of profit-
ability and capital use efficiency.  

• PI – Profitability index, which is a measure of the value created per 
unit of investment. PI = 1 represents a breakeven scenario, PI < 1 a 
loss, and PI > 1 a profitable investment. 

Fig. 4. Input and output standardisation for plant process models.  

Fig. 5. Exemplar process.  
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The Authors’ experience with Kawerau stakeholders, including 
business, district council and Government stakeholders, has been that 
there is variation in the preferred metrics for assessing IS opportunities. 
The project financial metrics listed above were motivated by these 
needs. Further to these, business stakeholders required metrics that ac-
count for risks posed by price and currency exchange rate volatilities, 
whereas district council and Government stakeholders were also keen to 
understand macroeconomic as well as environmental impacts. 

The environmental impact metric in this work is GHG emission on a 
CO2 equivalent basis. These are embedded in the plant models as an 
emissions flow stream, calculated using emission factors corresponding 
to energy use specific to each plant. This is considered as a variable cost 
stream in the DCFA. Details are given in Appendix A.1. 

The WoodScape methodology provides for the estimation of three 
macroeconomic impact metrics that would result from investment pro-
jects:  

• ΔGDP – contribution to gross domestic product (GDP),  
• ΔFTE – additional full-time-equivalent employment (FTE), and  
• ΔITREV – additional income tax revenue (ITREV). 

This methodology is based on economic multipliers. These are in-
dustrial sector-specific numbers derived from economic data or statis-
tical models of a national or regional economy, that estimate wider 
impacts of local economic changes. These multipliers arise from linkages 
and interactions of the local export sector, businesses and households in 
the community. They include multipliers for direct effects to firms that 
export additional goods and services, indirect effects to firms that supply 
the exporting firm, and induced effects from household spending in the 
community (Dixon et al., 2012; Miller, 2017). Details are given in 

Appendix A.2. 
To facilitate decision making under uncertainty, a Monte Carlo 

simulation (MCS) approach (Harrison, 2010) is adopted. The approach 
involves: (1) an input-output representation of the deterministic model 
system whereby uncertain variables are designated as inputs and deci-
sion metrics are designated as outputs; (2) representing the uncertain 
variables as probability density functions (PDF) which may be corre-
lated; and (3) repeatedly evaluating the model function using random 
sampling from these distributions to generate output distributions. This 
approach is superior to a traditional sensitivity analysis over a limited 
range of parameters since the output distributions provide a complete 
picture of the range of possible outputs and their probability of occur-
rence. The deterministic input-output relation for the techno-economics 
of candidate plants can be constructed as a parametric function by a 
composition of the metrics defined above with the plant function fp(d) as 
follows, 

Zi = gp
(
fp(d), pj

)
, (2)  

Where gp defines the TEA model function for plant p, Zi are the set of 
scalar decision metrics that require risk assessment, and pj is the set of 
uncertain parameters (e.g. currency exchange rate) that influence the 
metrics Zi. The MCS scheme is then as illustrated schematically in Fig. 6. 

The correlated PDFs of uncertain parameters are obtained by fitting 
an appropriate distribution to historical data and determining the 
Spearman ranked correlation coefficients between the parameters. 
When sufficient data is not available, a reasonable distribution is esti-
mated based on industry knowledge of nominal and extreme values. The 
distributions are sampled using the latin hypercube method which 
converges faster than normal random sampling (McKay et al., 2000). 

Fig. 6. Monte Carlo simulation scheme.  
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The convergence criterion is that the changes in mean values, the 
standard deviations and average percentiles are all below 1% for all 
computed distributions over three consecutive iterations. The sample 
size is variable and determined by iteratively increasing the number of 
samples until this convergence criterion is met. Summary statistics for 
the decision metrics such as the expectation values, standard deviations, 
or confidence intervals can be determined from the converged PDFs and 
CDFs (cumulative probability density function). 

An important reason for the Kawerau stakeholder’s interest in MCS is 
the volatility of currency exchange rate, as many export prices are priced 
in US$. In this case the best investment opportunity may not be those 
with the highest returns. A better metric of favourability for investment 
is the Sharpe ratio (SR). This is a measure of the returns on investment to 
volatility ratio (Lo, 2002). This ratio can be deduced from MCS results, 
and is defined as follows, 

SR =
〈ROCE〉 − RFR

standard deviation of ROCE
(3)  

Where 〈⋅〉 denotes expectation value and RFR is the risk-free rate of re-
turn, which is assumed to be the New Zealand Government treasury 
bond yield rate (2.48% pa, in October 2016). 

3.4. Cluster superstructure 

The approach taken for conceptual cluster design is that of synthesis 
by superstructure optimisation (Chen and Grossmann, 2017; Umeda 
et al., 1972). This is considered superior to the alternative hierarchical 
decision approach (Douglas, 1985) for synthesis which involve 
sequential stages of design and evaluation, in two important ways: (1) 
The superstructure approach systematically evaluates a large number of 
alternative structures; (2) The hierarchical approach cannot readily 
capture the interactions between decision criteria during various stages 
of design and evaluation, whereas the supercluster approach can do so 
because it solves the simultaneous design problem as a mathematical 
optimisation problem (Mencarelli et al., 2020). 

Fig. 7 illustrates how the formulation of the TEA models can be used 
to generate a superstructure. 

The method proceeds by starting with TEA models for the collection 
of plants that already exists within the cluster. This collection is then 
expanded by adding models for several plausible plant opportunities to 
construct a superstructure of alternatives in a network that is linked by 
mass and energy balance at a collection of nodes. Two main type of 
nodes are distinguished: (1) import nodes INi for each resource i which 
are received at the node from sources external to the boundary of the 
cluster. (2) local nodes LNi, each of which receives resource i from all 

plants that produce the resource and supplies it to all plants that require 
it. Either of these node types can be further distinguished based on 
whether the resource exchanged is a material resource that is required as 
a feedstock (e.g. wood chip) or whether it is a resource that serves as an 
energy carrier (e.g. electricity or geothermal steam). Denoting these 
distinctions by a left subscript M or E to represent material and energy 
resources respectively, the supercluster is established by the following 
set of nodal balance equations. 

For local nodes, mass balance for a material resource i is expressed as 
the difference between all the supplies of mass to the node and all de-
mands from that node, which gives the excess supply at the node as, 

L
Mei =

∑
L
Msi,j

∀ local
suppliers j

−
∑

L
Mdi,k

∀ local
demands k

(4) 

For local nodes, energy balance for an energy resource i is expressed 
as the difference between all the supplies of energy to the node and all 
demands from that node, which gives the excess supply at the node as, 

L
Eei =

∑
L
Esi,j

∀ local
suppliers j

−
∑

L
Edi,k

∀ local
demands k

(5) 

Similarly, for import nodes the excess supply of material resource i is 
given by, 

I
Mei =

∑
I
Msi,j

∀ external
suppliers j

−
∑

I
Mdi,k

∀ local
demands k

(6)  

and for import nodes, the excess supply of energy balances, 

I
Eei =

∑
I
Esi,j

∀ external
suppliers j

−
∑

I
Edi,k

∀ local
demands k

(7) 

In equations (4)–(7), the quantity si,j denotes a supply of resource i to 
a node INi or LNi unique to that resource type from a source j (local plant 
or import) and the quantity di,j denotes a demand for the resource from a 
sink j (plant). The quantity ei therefore represents the excess supply at 
nodes (see Fig. 7). All three quantities have units of either mass or en-
ergy depending on whether the resource is a material feedstock or an 
energy resource, respectively. 

3.5. MINLP optimisation 

The final step in identifying an optimal configuration that in-
corporates new opportunities is to specify an objective function and 
hence formulate the optimisation problem with appropriate constraints 

Fig. 7. Schematic of generalised superstructure network.  
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that is amenable to optimisation algorithms. An important insight from 
multi-stakeholder engagement is that there is diversity in what may be 
considered optimal. Such diversity may arise for purely business eco-
nomic reasons or concern for broader social and environmental impacts, 
purely technical constraints such as risk associated with process modi-
fication for symbiotic exchanges or general aversion to risk. The 
modular approach taken in this work using demand-driven process and 
TEA models provides the flexibility to swap different objective functions 
with relative ease and allow assessments from different perspectives. 
The objective function takes the form 

Zobj =Fobj(x) ≡ Fobj
(
gp
(
fp(d), pj

))
(8)  

Where Fobj is a scalar function and Zobj is the performance metric to be 
minimised or maximised. For example, Zobj could be total GHG emissions 
that need to be minimised or total GDP contribution that needs to be 
maximised. It is clear that Fobj will be non-linear (e.g. see equation 
(A.6)). Furthermore, the decision variables x include both continuous 
variables such as plant production rates and binary integer variables that 
effect the inclusion or exclusion of a plant option in the cluster. There-
fore, mixed integer non-linear programming becomes the appropriate 
formulation of the optimisation problem, and has the form, 

min
x

Fobj(x)

Such that 

Lb ≤ x ≤ Ub  

c(x) ≤ b  

ceq(x)=beq  

xi ∈R, xj ∈ {1, 0} (9)  

Where the inequality constraints c(x) ≤ b at a minimum includes the 
non-negativity constraints L

Mei ≥ 0, L
Eei ≥ 0, I

Mei ≥ 0, and I
Eei ≥ 0 that 

enforces the physical requirement that no node can supply resources in 
excess of what it receives. The lower bounds Lb and upper bounds Ub 
constraints enforce resource supply limits. The equality constraints 
enforce physical relations such as mass balances. The optimisation 
problem is solved using the NOMAD algorithm (Le Digabel, 2011) in 
MATLAB® using the OPTI (OPTimisation Interface) toolbox (Currie 
et al., 2012). The name NOMAD stands for “non-linear optimisation with 
the MADS algorithm” wherein the acronym MADS stands for mesh 
adaptive direct search. The fact that NOMAD is a derivative-free direct 
search algorithm that can solve non-differentiable global non-linear 
programmes, including non-convex MINLPs, adds to the flexibility of 
the overall methodology since any arbitrary “black box” plant function 
can be implemented without being overly concerned about MINLP 
solvability. In principle it is possible to perform MINLP optimisation on 
MCS-derived metrics. However, in this work, MCS is post optimisation 
(See Fig. 3) to circumvent potential convergence issues due to 
randomness introduced by the MCS. 

4. Kawerau case study 

4.1. Case study system 

The case study, demonstrating the methodology presented, looks at 
identifying profitable symbiotic opportunities by introducing new pro-
cessing plants into the cluster for better utilisation of existing resources. 
This includes looking at options of utilising some of the logs that 
currently pass through the cluster and bringing additional residues from 
nearby forests into the cluster. 

Existing and new plant options and their key resource exchanges are 
summarised in Table 1 and the corresponding superstructure is 

illustrated in Fig. 8. These options were chosen based on, a qualitative 
consideration of the existing cluster as it stands and, consultations with 
industry stakeholders. 

In Table 1, bark has been separated into four different grades 
depending how they are sourced and to what purpose they can be use-
fully applied. Bark A is from thick lower stem logs that are supplied from 
sawmills. Bark B is the thinner upper stem bark sourced from pulp mill 
debarking operations. Bark C is sourced from log yards which can 

Table 1 
Inputs and outputs for existing and prospective processing options for 
Kawerau.a.  

Plant Resource Products or by-products 

Kraft pulp mill 
(KPM) 

Pulp log, chip, bark A, bark B, 
shavings, chemicals, geothermal 
LP steam, electricity 

Pulp, hot water, GHG 

Newsprint mill 
(NPM) 

Pulp log, chip, chemicals, 
geothermal LP steam, 
geothermal HP steam, electricity 

Newsprint, bark B, GHG 

Structural sawmill 
(SSM) 

S grade log, geothermal LP steam Lumber, chip, offcuts, 
shavings, sawdust, bark A 

Industrial sawmill 
(ISM) 

A grade log, geothermal LP 
steam, electricity 

Lumber, sawdust, chip, 
offcuts, bark A, bark C, 
GHG 

Tissue paper mill 
(TPM) 

Pulp, chemicals, freshwater, 
geothermal MP steam, natural 
gas, electricity 

Tissue paper, wastewater, 
GHG 

Optimised 
Engineered 
Lumber (OEL™) 

K grade log, geothermal LP steam, 
electricity 

OEL™, chip, shavings, 
sawdust, bark A, bark C, 
offcuts, GHG 

Medium density 
fibre board 
(MDF) 

Pulp log, sawdust, chip, natural 
gas, electricity 

MDF, bark B, bark C, fines, 
GHG 

Plywood K grade log, A grade log, 
geothermal LP steam 

Plywood, cores, hog, bark 
A, bark C, GHG 

Wood pellets Sawdust, geothermal LP steam Pellets, GHG 
Terpenes and wood 

pellets 
Chip, shavings, sawdust, offcuts, 
chemicals, geothermal LP steam 

Terpenes, pellets, GHG 

Tannins and bark 
briquettes 

Bark A, bark D, process water, 
geothermal steam 

Tannin, bark briquette, 
wastewater, GHG  

a Rows in italic denote new processing options. 

Fig. 8. Simplified schematic of superstructure for Kawerau case studies.  
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contain significant amounts of dirt and Bark D is whole stem bark that 
can be sourced externally from forests and log yards (see Fig. 2). Simi-
larly, different log grades are used depending on their suitability to the 
target product and price. Residues from outside the cluster are priced at 
the site as a purchase price plus a transport cost for a nominal distance of 
~85 km. Locally produced residue is assumed accessible to all plants 
with a $5/odt transport cost. 

The material consumption and production for the existing plants (the 
base case) and assumptions on the upper bound (Ub) on resource 
availability are summarised in the Sankey diagram shown in Fig. 9 
which also shows existing symbiotic material exchange within the 
cluster (2016 data). 

In Fig. 9 all mass flows are indicated on an annual oven-dry basis (i.e. 
excluding moisture). The flow units are kilo-odt/y, indicated as kt for 
brevity. In interpreting the figure, any arrows out of an import or local 
node represent potentially available material in excess to the require-
ment of the current plants in the cluster. For example, the flows in and 
out of the “Pulp logs import” node show that the upper limit on available 
pulp logs is 588,000 odt/y, of which 417 kt is used by KPM and 21 kt 
used by NPM leaving an excess of 150 kt for other activity. The figure 
shows that the biggest additional log volumes are of A and K grade logs. 
Use and price assumptions for resources indicated in Fig. 9 are given in 
Appendix A.3. 

Fig. 10 shows the base case annual energy flows. The energy re-
sources are assumed to be available in large excesses such that current 

plant operations as well additional plant opportunities considered in this 
study will not be limited by these energy supplies. Hence there are no 
free arrows out of energy nodes. 

Case 1. adding new plants to maximise resource utilisation 
This case addresses the question, what new plants(s) could be added 

to the cluster to make better use of potentially accessible resources? That 
is, what scenario (or plant configuration) will maximise the amount of 
biomass used that is imported into the cluster. The equivalent optimi-
sation objective is to minimise the sum of excess biomass for all material 
resource import nodes. This is subject to the constraints that all existing 
plants maintain their current nominal production rate and their EBITDA 
must not fall below their current values, and any new plants added must 
achieve ROCE > 0. These constraints ensure that the resulting configu-
rations will not diminish the earnings of the existing plants. The 
resulting configuration along with key decision metrics are summarised 
in Table 2. The corresponding material flows are illustrated in Fig. 11. 

The key financial assumptions for all cases are: 100% debt finance, 
7% interest rate, 28% tax rate and 100% annual sales rate. 

The configuration in Fig. 11 can be understood by comparison with 
the base case (Fig. 9) where 562 kt of A grade and 315 kt of K grade logs 
are potentially available, in excess of existing demand. OEL™ requires K 
grade logs while Plywood can take a combination of K and A. The reason 
only 155 kt of A grade log is used for plywood production while still 
leaving 407 kt unused in this configuration, is a heuristic constraint 
within the Plywood model that the fraction of K grade log must not 

Fig. 9. Base case annual material flows and resource availability assumptions.  
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exceed 50% to achieve desired product quality. This coupled with the 
competition for the lower priced K grade logs between OEL™ and 
Plywood means that the supply of K grade logs limits how much A grade 
logs that Plywood can accept. It is not surprising that Tannin & Briquette 
appears in the configuration, being the only new plant option that can 
accept imported bark (see Table 1). 

The TEA results in Table 2 gives an idea of how a proposal for this 
configuration might be received by various stakeholders. The expected 
ROCE for Tannin & Briquettes is well below 20%. This is a threshold that 
the authors’ have gauged through stakeholder engagement, that would 
need to be cleared in order to motivate stakeholder interest. Relative to 
the base case, this scenario has increased GHG emission by 44 tonnes 
CO2 eq./y. The regional impact through GDP, employment and income 
tax revenues are found to be relatively low. Both the OEL™ and Plywood 
options are favourable from a ROCE perspective. However, the low 
Sharpe ratio suggests that a plywood plant would not be an attractive 

investment due to price volatility. Both options provide favourable 
regional economic impact prospects, although Plywood production will 
have a significant GHG emission impact. The latter is because plywood 
production is an energy-intensive process and the plant is large. While 
geothermal steam used for this process is a renewable resource, it 
typically contains significant CO2 and therefore has a GHG emission 
(0.1024 tonne CO2-e/tonne steam at Kawerau) (see Fig. 12 and compare 
with Fig. 10). 

Case 2. adding new plants to Maximise GDP contribution 
This case seeks a configuration that maximises the aggregate in-

crease in GDP contribution by the cluster and hence regional impact. 
This is primarily an economic objective aimed at a positive overall 
regional impact. The addition of new plants should not result in a loss of 
revenue for existing plants, for example, through competition for re-
sources. This is enforced with constraints to maintain the nominal pro-

Fig. 10. Base case annual energy flows.  

Table 2 
Performance metrics for optimal configuration to maximise resource use.a.  

Plant Production (odt/ 
y) 

Investment (M 
$) 

EBITDA
odt

($/odt/ 

y)  

NPV(M 
$)  

ROCE(%)  SR(-)  ΔGDP(M 
$/y)  

ΔFTE(-)  Tax rev. (M 
$/y) 

GHG (kt 
CO2eq) 

TPM 44k          
SSM 134k          
NPM 122k          
KPM 244k          
ISM 54k          
MDF – – – – – – – – – – 
OEL™ 252k 51 206 174 42 2.0 261 320 4 6 
Plywood 348k 170 152 139 19 1.1 396 631 7 33 
Pellets – – – – – – – – – – 
Terpenes, pellets – – – – – – – – – – 
Tannins, 

briquettes 
2k, 31k 27 204 10 13 1.4 24 108 1 2 

Clusterb – 258 71 323 – – 681 1157 12 41  

a Rows in italic indicate new plants or changes to existing plants selected by the optimisation. 
b The Cluster row shows an aggregate of a selection of metrics by treating the new configuration a result of a single investment. 
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Fig. 11. Material flows of optimal configuration and scales to maximise resource use.  

Fig. 12. Energy flows of optimal configuration and scales to maximise resource use.  
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Table 3 
Performance metric for optimal configuration to maximise GDP contribution.a.  

Plant Production (odt/ 
y) 

Investment (M 
$) 

EBITDA
odt

($/odt/ 

y)  

NPV(M 
$)  

ROCE(%)  SR(-)  ΔGDP(M 
$/y)  

ΔFTE(-)  Tax rev. (M 
$/y) 

GHG (kt 
CO2eq) 

TPM 44k          
SSM 134k          
NPM 122k          
KPM 244k          
ISM 54k          
MDF           
OEL™ 394k 70 209 288 46 2.0 409 491 6 9 
Plywood 350k 170 180 131 18 1.1 381 631 7 33 
Pellets           
Terpenes, pellets           
Tannins, 

briquettes 
2k, 35k  199 16 16 1.8 30 117 1 2 

Clusterb – 267 77 435 – – 819 1,229 13 44  

a Rows in italic indicate new plants or changes to existing plants selected by the optimisation. 
b The Cluster row shows an aggregate of a selection of metrics by treating the new configuration a result of a single investment. 

Fig. 13. Material flows of optimal configuration and scales to maximise GDP contribution.  
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duction rate and EBITDA of existing plants at least at their current level 
while requiring ROCE > 0 as in Case 1. The resulting configuration and 
key decision metrics are summarised in Table 3 and material flows are in 
Fig. 13. 

The new configuration has the same new plants selected as in Case 1, 
but at different scales such that Case 2 provides an increase in cluster 
aggregate GDP contribution by $136M/y relative to Case 1. This can be 
sub-optimal from the perspective of individual plants. For example, this 
proposal asks for more of the more expensive A grade logs to be taken up 
by Plywood in order to free up K grade logs to allow scaling up of the 
OEL™ operation which has a higher EBITDA/odt and GDP/ odt. How-
ever, this has not impacted the attractiveness for investment in OEL™ or 
Plywood as gauged through ROCE and SR. This significantly improves 
the profitability of a potential Tannin & Briquette operation within the 
cluster. This is because the new scales of operation produce local resi-
dues of Bark A feedstock in excess of what was available for import and 
at lower cost, from debarking of K grade logs in the OEL™ and Plywood 
production. 

The energy flow distribution from sources to processing plants for 
the Case 2 optimal configuration is given in Appendix A.4 Fig A.1. 

Case 3. maximising revenue per unit mass of feedstock while allowing 
an existing plant to expand 

Rather than building new plants, a further option to grow the cluster 
could be for one or more of the existing plants to expand. This case 
explores this option by allowing the existing ISM to expand. This mill is 
the only existing plant capable of using further volumes of underutilised 
A grade logs. The optimisation objective is to minimise the cluster 
aggregate EBITDA/odt of biomass resource consumed. The key con-
straints are that all existing plants except for ISM maintain their current 
nominal production rate and their EBITDA must not fall below their 
current values and that new plants added must have ROCE > 0. ISM on 
the other hand can scale up production, with the constraint that new 
investment for the scale up must achieve a positive ROCE. The resulting 
optimal configuration and key decision metrics are summarised Table 4 
and Fig. 14. 

These results show that a scale-up of ISM can locally produce sig-
nificant amounts of chip and sawdust. This in conjunction with the in-
clusion of an OEL™ plant that produces additional chip and sawdust, is 
then able to support an MDF plant by importing some additional pulp 
log. This however places the MDF plant and the existing KPM in 
competition for pulp log, which will impact future growth options for 
both plants. It is also observed that while the EBITDA/odt improved for 
the cluster relative to Case 1, other financial metrics becomes worse. 

Whilst the cluster configuration conforms to the optimisation 

constraint ROCE > 0 for all new investments, both ISM and MDF have 
negative NPVs for these investments (Table 4). This is consistent with 
the high threshold requirement for ROCE expressed by industry stake-
holders. The configuration is also consistent with industry experience 
that MDF typically need large scale operations to be profitable. Another 
important observation is that both investments show unprofitable 
Sharpe ratios. Some insight into these observations can be obtained from 
the post-optimisation MCS. As an exemplar, Fig. 15(A) shows a tornado 
plot that ranks cost parameters that have the most influence on ROCE. 
The horizontal span of the bars represents the range of variation in ROCE 
due to variations of the influence parameters over the 95-percentile 
extent of their probability distributions. ROCE values outside these 
bars are highly improbable. 

Fig. 15(B) and (C) shows the sensitivity of ROCE to the two most 
influential cost parameters, the price of A grade logs and the foreign 
exchange rate. The reason for the large influence of the foreign exchange 
rate is that the product is exported out of New Zealand and priced in US 
$, and the foreign exchange rate between US$ and NZ$ happens to be 
quite volatile. 

To understand the aggregate impact of all such sensitivities on ROCE, 
the correlations amongst the influence parameters must be considered. 
Fig. 16, shows the MCS-derived distributions for ROCE considering the 
correlation between cost parameters. The figure shows that whilst the 
expected value of ROCE is positive (+4% corresponding to CDF = 0.5) 
there is potential for considerable variation, that would result in a low 
Sharpe ratio. Furthermore, CDF = 0.4 for ROCE = 0 indicates that there 
is a 40% chance that the investment will have negative returns and 
corresponds to the negative NPV despite a positive ROCE. 

The energy flow distribution from sources to processing plants for 
the Case 3 optimal configuration is given in Appendix A.4 Fig A.2. 

5. Conclusions 

This paper has presented a generalised and systematic decision support 
methodology and tool to quickly identify and evaluate symbiosis oppor-
tunities in industrial clusters. The methodology centres around cluster 
design by superstructure optimisation using mixed integer non-linear 
programming. Individual plant models that form the superstructure are 
demand-driven and have a standardised yet flexible modular formulation 
that seeks a balance between high-level process models that may be too 
optimistic in their predictions, and rigorous process models that can 
become too complex and intractable. This was achieved using a combi-
nation of heuristics methods and thermodynamics principles and is reliant 
on recent advancements in derivative-free optimisation algorithms that can 
robustly solve arbitrarily defined MINLP problems. 

Table 4 
Performance metric for optimal configuration to maximise revenue per unit resource allowing ISM to scale up.a.  

Plant Production (odt/ 
y) 

Investment (M 
$) 

EBITDA
odt

($/odt/ 

y)  

NPV(M 
$)  

ROCE(%)  SR(-)  ΔGDP(M 
$/y)  

ΔFTE(-)  Tax rev. (M 
$/y) 

GHG (kt 
CO2eq) 

TPM 44k          
SSM 134k          
NPM 122k          
KPM 244k          
ISM 176k 85 22 − 34 4 0.1 88 339 2 4 
MDF 414k 438 208 − 8 8 0.7 410 550 5 114 
OEL™ 239k 49 204 160 41 1.9 243 291 4 6 
Plywood 347k 169 191 151 19 1.2 393 631 7 33 
Pellets           
Terpenes, pellets           
Tannins, 

briquettes 
1k, 22k 19 213 10 15 1.9 18 66 <1 18 

Clusterb – 761 92 278 – – 1149 1877 18 157  

a Rows in italic indicate new plants or changes to existing plants selected by the optimisation. 
b The Cluster row shows an aggregate of a selection of metrics by treating the new configuration a result of a single investment. 
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Fig. 14. Material flows of optimal configuration and scales to maximise revenue per unit resource allowing ISM to scale up.  

Fig. 15. (A) Influential costs for ROCE. (B) & (C) Sensitivity of ROCE to the two most influential costs.  
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The model includes both flexible cluster design objectives and de-
cision metrics for investment profitability, macroeconomics and envi-
ronmental impact. This makes it a powerful tool for evaluating 
symbiosis opportunities in industrial clusters and addressing the diverse 
needs of the stakeholders involved in a cluster. The flexibility of the tool 
offers potential for application in other integrated planning with 
stakeholder engagement such as integrated farm planning. 

The methodology has been demonstrated by applying it to three case 
studies to identify and evaluate new wood processing opportunities at 
Kawerau, New Zealand. These looked for profitable symbiotic opportu-
nities by introducing a small selection of plausible new primary processing 
and/or residue processing plants into the cluster. The case studies using 
several optimisation objectives, suggest that some combination of the 
production of Optimised Engineered Lumber™, tannins and bark bri-
quettes and plywood are promising new opportunities for the Kawerau 
cluster and that the optimal configuration depends on the criteria used to 
optimise the cluster. The case studies also highlight the importance of 
considering the impact of price volatility in industrial cluster design or 
expansion. Notably, the Monte Carlo analysis provides plausible explana-
tions for the rather high threshold requirements for returns on capital 
employed that were expressed by industry stakeholders at Kawerau. While 
these case studies are for a single site, the methodology is formulated to be 
quite general and based on fundamental principles of mass and energy 
balances, which makes it applicable to other clusters. 

An important limitation of the proposed model framework is that it 
does not explicitly incorporate a spatial dimension and relies on an 
average transport cost for local use of resources by all processing plants 
within the cluster. Whilst this may not be significant for clusters of 
limited geographical extent such as Kawerau, the model framework 
would be significantly improved by incorporating an explicitly location- 
based transport model to estimate the cost of transport within the in-
dustrial cluster. 
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